
Copyright © 1999 by Bob Brown

Shifting and Shifters
Bob Brown

Computer Science Department
Southern Polytechnic State University

Shifting

We can multiply a decimal number by ten by adding a zero on the right, like this:
13 × 10 = 130. Recall that the digits of a decimal number are coefficients of a power
series in powers of ten. What has actually happened is that the original digits are shifted
left one place in the series, so that the one is shifted from the tens place to the hundreds
place and the three is shifted from the units place to the tens place. The added zero
occupies the units place. Similarly we can multiply a binary number by two by adding a
zero on the right, so 0101 × 2 = 01010. Binary digits are coefficients in a series of
powers of two, and adding a zero shifts each digit to the next higher place in the series.
For any positional number system of base B, adding a zero at the right multiplies the
number by B.

Removing a digit on the right of a decimal number has the effect of dividing by
ten; the digit removed is the remainder. Thus, 157 ÷ 10 = 15 with remainder 7. The
digits are shifted right with respect to the power series. Shifting a binary number to the
right divides by two. Shifting any base B number to the right divides by B. The digit
removed is the remainder, which will be between 0 and B− 1.

When shifting numbers with pencil and paper, it is not necessary to consider what
happens at the left end of a number. We just add and remove digits on the right.
Computers represent numbers in fixed sizes. Adding a digit at the right necessarily
means discarding a digit at the left. Consider an unsigned eight-bit number. We can shift
00000101 left one place and get the expected result: 00001010. A non-significant zero
was dropped on the left. However, shifting 10100101 left produces 01001010, not the
desired answer at all. As with other arithmetic operations, the rules are different when
finite precision arithmetic is involved. If the leftmost digit is significant, shifting left no
longer multiplies by B.

 When shifting right, we must supply a digit on the left. When shifting unsigned
or positive numbers, supplying a zero on the left produces the expected result. Such a
shift is called a logical shift.

A problem arises when shifting signed numbers. Shifting 11110101 right
produces 01111010 with remainder one. The result is no longer negative. What is
needed is to supply a one, not a zero, on the left if the number is negative. More
generally, we want to replicate the sign bit, supplying a zero for positive numbers and a
one for negative numbers. Such a shift is called an arithmetic shift.

-2-

Shifters

A shifter is a combinational circuit with one or more inputs and an equal number
of outputs. The outputs are shifted with respect to the inputs. If only a shift left or a shift
right is required, no gates are needed; such
a shift can be accomplished with wires.
Refer to Figure 1. Figure 1 a) shows a shift
left. The data inputs are D0 through D3 and
the shifted outputs are S0 through S3. A
zero is supplied to S0, S1 is connected to
D0, S2 to D1, and so on. The leftmost bit, in
this example D3, is discarded. * Similarly,
a right shift can be wired as shown in
Figure 1 b). A zero is supplied to S3 on the
left, each of the remaining data bits is
shifted right one place. The rightmost data
bit, D0, is discarded.

If a constant shift left or right is needed, a circuit such as the one above will serve.
Usually, more flexibility is needed. Let us examine a four-bit shifter that can shift either
left or right, depending on
one of two control lines.
Examine the AND gates at
the extreme left. If the LEFT
control line is active, the
leftmost AND gate sends its
output to the “bit bucket.”
If the RIGHT control line is
active, the other AND gate of
the pair sends signal D3 to
output S2 via the OR gate.
Each of the remaining
pairs of AND gates can
send their outputs either
left or right, depending on which control line is active. The leftmost and rightmost AND
gates are not actually needed, but are shown for emphasis and because we will use them
in the next circuit.

If you examine the inner pairs of AND gates, you will see that a shifter like the one
in Figure 2 can be constructed in any width. All that is required is to add two AND gates
and an OR gate for each additional bit. Shifters can be constructed in “slices” that can be
wired together. A 32-bit shifter can be built of four eight-bit shifter “slices”.

* “Bit bucket” is computer jargon for the fictitious place where discarded data is sent.

Figure 1. a) Shifting left, and b) shifting right.

D3

S3 S2 S1 S0

D0D1D2

D3

S3 S2 S1 S0

D0D1D2

0

Bit Bucket

Bit Bucket

0

a)

b)

Right

Bit BucketBit Bucket

Left
D0D1D2

D3

S0S1S2S3

Figure 2. This circuit can shift the input bits left or right,
depending on which control line is active.

-3-

The circuit of Figure 2 discards any signal shifted out. However, the bit shifted
out is of interest. In a right shift, it is the remainder after division by two. In a shift left,
it can be tested for
significance so that the
results of a left shift can be
evaluated for validity. The
bits shifted out are
available from the AND
gates at the extreme left
and right of the circuit.
Figure 3 adds an OR gate to
capture the bit shifted out.
For the circuit shown, this
will be D3 for a left shift or
D0 for a right shift. If a
shifter like this were made
a part of the data path of a
computer, the signal generated at SHIFT OUT would be saved in a one-bit register and
made available for inspection by the programmer. Often the bit shifted out is saved in the
CARRY flag.

If we design a shifter that can shift left or right, data must be routed through the
shifter when shifting is needed and around it at other times. This increases the
complexity of the control unit. Another alternative is to design the shifter to have three
options: shifting left, shifting right, or not shifting at all. This compromise adds two gate
delays when shifting is not needed, but at a saving of complexity elsewhere. Adding a
“no shift” option is
accomplished with a third
control line and a third AND
gate for each bit. Figure 4
shows such a circuit. Each
input bit now drives three
AND gates, only one of which
is selected by one of the three
control lines. The middle
AND gate sends input to
output without shifting.

Completing our shifter
requires attention to one more
detail. So far we have no way to deal with the sign bit when performing a right shift on
signed data. In other words, we cannot yet do an arithmetic right shift. For a logical
right shift, a zero is supplied at the left. Each of the circuits above does this. For an
arithmetic shift, the leftmost bit of the input is considered the sign bit. It must be shifted
to the right and also copied to the leftmost bit of the output. The design for such a shifter
is shown in Figure 5. A fourth control line is added for arithmetic right shift. An OR gate

Left
D0D1D2

D3

S0S1S2S3

Right

Shift Out

Figure 3. Capturing the bit shifted out so that it can be made
available for inspection.

Left
D0D1D2D3

S0
S1S2S3

Right

Shift Out

No Shift

Figure 4. A shifter with a “no shift” option.

-4-

drives the RIGHT control line when either an arithmetic or a logical right shift is
commanded. A second OR gate drives the copy function for the leftmost bit when an
arithmetic right shift is commanded.

A decoder is used to generate the control lines. This means that the control unit
has to generate only two bits to specify shifting and guarantees that one and only one set
of control lines within the shifter is active at any time. The codes used for the four types
of shifts are arbitrary. The codes used above were selected to minimize wire crossings in
the drawing.

Left

Right

Shift Out

No Shift
C0

C1

0

1
2

3

2-to-4
D

ecoder

D3

S3 S2
S1 S0

D0D1D2

00 Shift Left
01 No shift
10 Shift Right Logical
11 Shift Right Arithmetic

Figure 5. Final design of a shifter. This circuit can perform left shifts, logical and arithmetic
right shifts, or no shift.

