
Copyright © 2001 by Bob Brown

Binary Numbers
and Computer Arithmetic

Bob Brown
School of Computing and Software Engineering

Southern Polytechnic State University

Introduction

All modern computer systems use binary, or base two, to represent numbers internally.
For this reason, computer scientists must be very familiar with the binary system. The principles
of the binary number system are the same as the familiar decimal system. Computer arithmetic
is similar to everyday paper-and-pencil arithmetic, but there are some fundamental differences.
In this paper we will explore the binary number system, representations of numeric data, and
methods of performing arithmetic that are applicable to automation.

Positional Number Systems

The idea of “number” is a mathematical abstraction. To use numbers, we must represent
them in some way, whether by piles of pebbles or in some other way. It is common to create a
code for representing numbers. Such codes are called number systems.

Every number system uses symbols to convey information about the value of a number.
A positional (or radix) number system is one in which the value that a symbol contributes to a
number is determined by the both symbol itself and the position of the symbol within the
number. That's just a fancy way of saying that 300 is far different from 3. Compare the idea of a
positional number system with Roman numbers, where X means 10 no matter where in a number
it appears.

 The decimal number system we use every day is a positional number system. Decimal
numbers are also called base 10 or radix 10 numbers. The symbols are the digits 0, 1, 2, 3, 4, 5,
6, 7, 8, and 9, the plus and minus signs, and the period or decimal point. The position of each
digit within the number tells us the multiplier used with it.

Consider the number 1037. We learned in elementary school to call the rightmost digit
the ones place, the next digit the tens place, then the hundreds place, then the thousands place,
and so on. Mathematically, 1037 means 1×103 + 0×102 + 3×101

 + 7×100 . Each digit in the
number is multiplied by some power of ten, starting with 100 at the right and increasing by one
for each position to the left. The digits of a decimal number are the coefficients of a power series
in powers of ten.

Any number to the zeroth power is one, so 100 is one and 7×100 is just 7×1 = 7. A
number raised to the first power is itself, so 101 is ten, and 3×101 is 3×10, or thirty.

In the hundreds place, we have 0×102 or “no hundreds.” Even though the symbol zero

Binary Numbers and Computer Arithmetic

–2–

does not contribute to the value of the number, it is important as a placeholder. If we didn’t have
the zero, we could not distinguish between 1037 and 137.

Using just the digits zero through nine, the decimal number system can express any non-
negative integer, however large. The value of an n-digit decimal integer is

an-1×10n-1 + an-2×10n-2 + … + a1×101 + a0×100

This can be written more compactly as: ∑
−

=

1

0

n

i

ai10i

Adding a minus sign to the available symbols lets us express any integer, positive or
negative. To express fractions, we use the period symbol. The digit immediately to the right of
the period represents 10-1 or 1/10, the next digit 10-2 or 1/100, and so on. Although we can
represent any integer with decimal numbers, the same is not true of fractions. For example, the
fraction 1/3 cannot be exactly represented as a decimal fraction. However, we can make an
arbitrarily precise approximation; if 0.33 isn’t close enough, we can write 0.333, or even
0.3333333333.

Using Other Bases

The discussion so far has been limited to base 10 or decimal numbers because they are
familiar to us. It is possible to represent numbers in positional notation using bases other than
10. An n-digit non-negative integer in base B would be represented as

∑
−

=

1

0

n

i

ai B
i

The only difference between this expression and the one above is that we have substituted
some base B for 10. The choice of a base isn’t entirely arbitrary; we’d like it to be an integer
greater than one, and relatively small. Both of these constraints are because a base B number
system requires B symbols. We need at least two symbols so that we can have a zero to serve as
a placeholder. We don’t want so many symbols that reading and writing numbers becomes
unwieldy. In computer science, it is common to deal with numbers expressed as base two, base
eight, and base 16.

Binary Numbers

Numbers in base two are called binary numbers. A binary number system requires two
symbols; we choose 0 and 1. The positions within a binary number have values based on the
powers of two, starting with 20 in the rightmost position. The digits of a binary number are
called bits, which is a contraction of binary digits.

Consider the binary number 10101. This represents the value 1×24 + 0×23 + 1×22 + 0×21

+ 1×20, or 1×16 + 0×8 + 1×4 + 0×2 + 1×1, or 16 + 4 + 1, or 21.

Binary Numbers and Computer Arithmetic

–3–

Let’s look at the same thing a different way:

1 0 1 0 1

24 23 22 21 20

16 8 4 2 1

16 + 4 + 1 = 21

The first row is the binary number we want to examine. On the second row starting at the
right, we write the power of two that corresponds to each position. The rightmost position is 20

and the power increases by one with each position to the left.

The third row is the decimal value of each of the powers of two. Notice that each of the
numbers is twice the value of its predecessor. You simply start with one in the rightmost
position and double each time you move left.

The decimal value of each digit is the digit itself, zero or one, multiplied by the power of
two indicated by the digit’s position. If the digit is a one, we copy the power of two to the fourth
row; if the digit is a zero, we do not. This is equivalent to multiplying each positional value by
the associated binary digit. Finally, we add across the bottom row to get the decimal value of the
binary number.

As students of computer science, you will find it convenient to memorize the values of
the first several powers of two, plus certain other values like 210, 216, and 220. You can easily
find the value of any small power of two by starting with one you know and doubling until you
reach the desired value. For example, if you know 216, you can find 218 by doubling twice. If
necessary, you can start with 20 = 1 and double until you reach the value you need.

Usually the base of a number will be clear from the context; if necessary, the base is
indicated by a subscript following the number, so we could write, for example, 10102 = 1010.

Why Binary?

We’ve gone to some length to describe a number system based only on zero and one. It
is appropriate to digress briefly to explain why we choose to use binary numbers instead of the
familiar decimal system when building computers. The answer is reliability. It turns out to be
easy to design electronic circuits that can distinguish between on and off, or between positive
and negative. It is much harder to build circuits that can reliably discriminate among several
states. Seemingly identical electronic components will be slightly different even when new
because of manufacturing tolerances. These differences are magnified with age and with
differences in operating environment.

Consider a decimal computing machine in which we choose to represent the digits zero
through nine with signals of zero through nine volts. We design the machine so that an actual
signal of 6.8 volts is interpreted as the digit seven, allowing some tolerance for error. We also
decide that 6.4 volts represents six. What do we do with a voltage of 6.5? Does this represent
seven or six? With this scheme, a difference of 0.5 volts, or five percent, causes an error that
cannot be resolved.

Binary Numbers and Computer Arithmetic

–4–

With binary numbers, we need only the symbols zero and one. If we say that zero volts
represents a zero and ten volts represents a one, we can interpret anything less than 5.0 volts as
zero, anything greater as one. This design can tolerate an error of nearly 50% and still produce
correct results.

How High Can We Count?

With pencil and paper, we can write down any number we can imagine, using either the
decimal or binary number systems. If we need more digits, we just write them. With computing
machinery, the number of bits available for a number is likely to be fixed by the architecture.
There may be ways of representing larger numbers, but these are likely to be painful. So, the
question, “How high can we count given a fixed number of bits?” becomes an important one.
Fortunately, it’s easy to answer.

An n-bit binary number has 2n possible values. This is easy to see. A single bit has two
possible values, zero and one. With two bits, you get four values: 00, 01, 10, and 11. Three bits
can generate eight distinct combinations, and so on. Of the 2n possible values of an n-bit
number, one will be all zeroes and represent the value zero. So the largest value that can be
represented using an n-bit number is 2n –1. An eight bit binary number has 28 (256) possible
values, but since one of those values represents zero, the largest possible number is 28–1 or 255.

There’s another implication to the fact that in computers, binary numbers are stored in
fixed-size “words.” It is that each binary number must be the same number of bits. For unsigned
integers, this is accomplished by padding on the left with zeroes.

Converting Decimal to Binary

Converting binary numbers to decimal is easy. We just write down the powers of two,
which correspond to each digit in the binary number, then sum those for which the binary digit is
a one. To convert a decimal number to binary, we express the decimal number as a sum of
powers of two. These indicate which binary digits are ones; the rest will be zeroes. We will
consider two ways to approach this product. The first is to find the sum of powers of two
directly:

• Find the largest power of two smaller than the number to be converted. This is 2n for
a decimal number D where 2n+1 > D > 2n.

• Write a one in the 2n place of the binary number and subtract 2n from D. Call the
remainder R.

• For each power of two from 2n-1 down to 20, if the power of two is less than or equal
to R, write a one in the corresponding binary digit’s position and subtract the power
of two from R. Otherwise, write a zero in the binary digit’s position.

Let’s do an example: we will convert 27710 to binary. First, we count off powers of two:
1, 2, 4, 8, 16, 32, 64, 128, 256, 512. We stopped at 512 because it is larger than 277, the number
we’re trying to convert. We “back down” one to 256, which is the largest power of two smaller

Binary Numbers and Computer Arithmetic

–5–

than 277. Now we’re ready to begin converting. As you will see in the table, we write down
277, subtract 256 from it, and write a one in the first (leftmost) binary digit.

The remainder after subtracting 256 from 277 is 21, and the next power of two is 128.
Because 128 is larger than 21, we write a zero in the next bit but do not subtract. We write
zeroes for the 64 and 32 places, too. Sixteen is not larger than 21, so we write a one and subtract
16 from 21. Work your way through the last rows of the table yourself.

Power
Of two

Number or
Remainder

Binary
Digits

 277

256 -256 1

128 21 0

 64 0

 32 0

 16 -16 1

 8 5 0

 4 -4 1

 2 1 0

 1 -1 1

 0

We’ve converted 27710 to 1000101012. Convert the binary number back to decimal to
check the result.

Finding powers of two has an intuitive appeal but there is a feeling of “cut and try” to it.
Another approach to converting decimal to binary is repeated division by two. The original
decimal number is divided by two. The remainder, which will be zero or one, is the rightmost bit
of the binary number. The quotient is again divided by two and the remainder becomes the next
bit. This process continues until a quotient of zero is produced.

Binary Numbers and Computer Arithmetic

–6–

As an example of the division by two method, we will convert the number 14110 to
binary. The center column of numbers is the original number, 141, and the quotients that are
generated by successive division by two. The right column is the remainder from each division.

It is important to notice that the first remainder becomes the rightmost bit in the resulting binary
number. We have converted 14110 to 100011012 by dividing by two and copying the remainders
to the binary number. The first by two determines whether the number is even or odd. The
second determines whether there is a factor of two; the third determines whether there is a factor
of four, and so on.

Hexadecimal Numbers

Binary numbers are essential for the computer scientist, but binary numbers more than a
few digits long are difficult to transcribe accurately. The hexadecimal (base 16) and octal (base
8) number systems can be used as number systems in their own right, but in computer science
they are most often used as a shorthand for binary numbers. Since the bases of both systems are
powers of two, translating between either base and binary is easy.

Like decimal and binary numbers, the hexadecimal, or base 16 number system is a
positional number system. We know that there must be 16 symbols, and we choose 0, 1, …, 9,
A, B, C, D, E, and F. Symbols 0 through 9 have the same unit values they have in the decimal
system, but of course the positional multiplier is different. Hexadecimal (or hex) A has the value
1010, B is 1110, C is 1210, D is 1310, E is 1410, and F is 1510.

The positions in a hexadecimal number have as their values powers of 16, starting with
160 at the right, then 161, 162 or 256, 163 or 4096, and so on. Four hexadecimal digits let us
represent numbers up to 15×163 + 15×162 + 15×161 + 15, or 15×4096 + 15×256 + 15×16 +15, or
61,440 + 3840 + 240 + 15, or 65,535. This number would be represented as FFFF. A value of
010016 is equal to 25610.

1412
70

35

17
8

4

1

2

0

1 0 0 0 1 1 0 1

1

02

2

2
2

2

2

2

1

1
0

1

0
0

Figure 0. Converting decimal to binary by repeated division by two.

Binary Numbers and Computer Arithmetic

–7–

Hexadecimal numbers can be used as a kind of shorthand for binary numbers, to avoid
writing out long strings of ones and zeroes. Study the following table:

Binary Hex Decimal Binary Hex Decimal

0000 0 0 1000 8 8

0001 1 1 1001 9 9

0010 2 2 1010 A 10

0011 3 3 1011 B 11

0100 4 4 1100 C 12

0101 5 5 1101 D 13

0110 6 6 1110 E 14

0111 7 7 1111 F 15

As you can see, each hex digit is exactly equivalent to one of the possible combinations
of four binary digits, so we could write 716 instead of 01112. This works for numbers larger than
four bits or one hex digit. 7A16 is equivalent to 011110102. Four hex digits let us express a 16-
bit binary number in four symbols instead of 16.

It is common to use indications other than a subscript 16 to identify numbers as
hexadecimal when it is not clear from the context. The following are all examples of indicators
of hexadecimal numbers: x’7A’, 0x7A, and 7Ax. In the Motorola 68000 assembler we will be
using in CS2224, hexadecimal numbers are indicated by a dollar sign, so $08 is 816.

Converting from hexadecimal to binary is easy: for each hex digit, write the four binary
digits which have the same value. For example, to convert 4C16 to binary, we first write 0100
which is the binary equivalent of 416, then we write 1100 which is the binary equivalent of C16,
so 4C16 = 010011002.

To convert a binary number to hexadecimal, start at the right and divide the number into
groups of four bits. If the last group is fewer than four bits, supply zeroes on the left. (If the
binary number contains a radix point, move from right to left on the integer part and from left to
right on the fraction part.) Then, for each group of four bits, write the hex digit which has the
same value.

For example, we will convert 1100011101 to hex.

0011 0001 1101
 3 1 D

We first divide the binary number into groups of four bits, working from the right. The

Binary Numbers and Computer Arithmetic

–8–

leftmost group had only two digits, so two zeroes were supplied on the left. The leftmost group
of bits has the numeric value three, and we write a three as the hex digit for that group. The next
group has the numeric value one. The rightmost group has the numeric value 13, or hex D. We
have converted 11000111012 to 31D16.

Octal Numbers

The octal number system is a positional number system with base eight. Like
hexadecimal numbers, octal numbers are most frequently used as a shorthand for binary
numbers. Octal numbers are seen less often than hexadecimal numbers, and are commonly
associated with Unix-like operating systems. The octal digits are 0, 1, 2, 3, 4, 5, 6, and 7.
These digits have the same unit values as the corresponding decimal digits. Each octal digit
encodes three binary digits as shown in the table below.

Binary Octal Decimal

000 0 0
001 1 1

010 2 2

011 3 3

100 4 4

101 5 5

110 6 6

111 7 7

Octal numbers are sometimes indicated by a leading zero.

Numbers are converted from octal to binary one digit at a time. For each octal digit,
write down the three binary digits which represent the same value. To convert 1248 to binary we
write 001 010 100, and 1248 = 0010101002. Sometimes octal numbers are used to represent
eight-bit quantities. Representing eight bits requires three octal digits, which translate to nine
bits. In this case, the leftmost bit, which should be a zero, is discarded.

Converting a binary number to octal follows the same process as converting a
hexadecimal number except that the binary number is divided into groups of three bits. To
convert 010011002 to octal, we divide the number into groups of three bits, starting from the
right, then write down the corresponding octal digit for each group.

001 001 100
 1 1 4

In this example, it was necessary to supply an extra zero on the left to make three bits.
We have converted 010011002 to 1148.

To convert octal numbers to hexadecimal, or vice-versa, first convert to binary,
then convert to the desired base by grouping the bits.

Binary Numbers and Computer Arithmetic

–9–

Binary Addition

Since we’ve talked about binary numbers as the basis for the electronic circuits for
computers, it won’t surprise you that we can do arithmetic on binary numbers. All the operations
of ordinary arithmetic are defined for binary numbers, and they work much the same as you are
used to. Let’s look at the rules for binary addition:

 1

 0 0 1 1 +1

+0 +1 +0 +1 +1

 0 1 1 10 11

The first three of those don’t require any explanation, but the fourth and fifth might.
Look at the fourth rule and recall that the result is a binary number, so 102 represents one two
and no ones, and in binary one plus one is two, exactly as you would expect. The rule says that
1+1=0, with one to carry to the next place. This is the same principle as carrying numbers in
decimal addition, except that we carry when the partial sum is greater than one. The fifth rule
adds three ones to get a one as the partial sum and another one to carry. We’re written 1+1+1=3,
which is what we expect.

Now we will add two binary numbers with more than one bit each so you can see how the
carries “ripple” left, just as they do in decimal addition.

1 1 1

0 0 1 1 0

+ 0 1 1 1 1

1 0 1 0 1

The three carries are shown on the top row. Normally, you would write these down as
you complete the partial sum for each column. Adding the rightmost column produces a one
with no carry; adding the next column produces a zero with one to carry. Work your way
through the entire example from right to left. Then convert the addend, augend, and sum to
decimal to verify that we got the right answer.

One can also express the rules of binary addition with a truth table. This is important
because there are techniques for designing electronic circuits, which compute functions
expressed by truth tables. The fact that we can express the rules of binary addition as a truth
table implies that we can design a circuit which will perform addition on binary numbers, and
that turns out to be true.

We only need to write the rules for one column of bits; we start at the right and apply the

Binary Numbers and Computer Arithmetic

–10–

rules to each column in succession until the final sum is formed. Call the bits of the addend and
augend A and B, and the carry in from the previous column Ci. Call the sum S and the carry out
Co. The truth table for one-bit binary addition looks like this:

A B Ci S C

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

This says if all three input bits are zero, both S and Co will be zero. If any one of the bits
is one and the other two are zero, S will be one and Co will be zero. If two bits are ones, S will
be zero and Ci will be one. Only if all three bits are ones will both S and Co be ones.

That’s all there is to binary addition. It’s remarkably similar to decimal addition. As you
would expect, the other arithmetic operations are also defined for binary numbers.

Negative Numbers

So far we have dealt only with non-negative integers — whole numbers zero or
greater. For a computer to be useful, we must be able to handle binary negative numbers and
fractions. For pencil-and-paper arithmetic we could represent signed binary numbers with plus
and minus signs, just as we do with decimal numbers. With computer circuits, our only symbols
are zero and one. We must devise a way of representing negative numbers using only zeroes and
ones. There are four possible approaches: signed magnitude, ones complement, twos
complement, and excess 2n−1. The first three of these take advantage of the fact that in
computers numbers are represented in fixed-size fields. The leftmost bit is considered the sign
bit. The ones complement is formed by complementing each bit of the binary number. Again a
zero in the sign bit indicates a positive number and a one indicates a negative number. Signed-
magnitude and excess 2n−1 numbers are used in floating point, and will be discussed there. Ones
complement arithmetic is obsolete.

In signed-magnitude representation, a zero in the sign bit indicates a positive number, and
a one indicates a negative number. There is a problem with signed magnitude: is has two
representations for zero. Consider an eight-bit word. 00000000 is “plus zero” and 10000000 is
“minus zero.” Since testing for zero is something that’s done very frequently in computer
programming, we would like to develop a better idea.

The better idea is something called twos complement. Twos complement numbers are
used almost universally for integer representation of numbers in computers. The sign still
resides in the leftmost bit, and positive numbers are treated just like the unsigned integers we’ve
already used except that results are never allowed to flow over into the sign bit.

Binary Numbers and Computer Arithmetic

–11–

Let’s go back to the basic idea of a binary number. In the binary number system, we can
express any non-negative integer as the sum of coefficients of powers of two:

an-1×2n-1 + an-2×2n-2 + … + a1×21 + a0×20 = ∑
−

=

1n

0i

ai2
i

One way of looking at two’s complement numbers is to consider that the leftmost bit, or
sign bit, represents a negative coefficient of a power of two and the remaining bits represent
positive coefficients which are added back. So, an n-bit two’s complement number has the form

–2n–1an–1+∑
−

=

2n

0i

ai2
i

Consider 10000000, an eight-bit two’s complement number. Since the sign bit is a one, it
represents –27 or –128. The remaining digits are zeroes, so 10000000 = –128. The number
10000001 is –128+1 or –127. The number 10000010 is –126, and so on. 11111111 is –128 +
127 or –1.

Now consider 01111111, also an eight-digit two’s complement number. The sign bit still
represents –27 or –128, but the coefficient is zero, and this is a positive number, +127.

The two’s complement representation has its own drawback. Notice that in eight bits we
can represent –128 by writing 10000000. The largest positive number we can represent is
01111111 or +127. Two’s complement is asymmetric about zero. For any size binary number,
there is one more negative number than there are positive numbers. This is because, for any
binary number, the number of possible bit combinations is even. We use one of those
combinations for zero, leaving an odd number to be split between positive and negative. Since
we want zero to be represented by all binary zeros and we want the sign of positive numbers to
be zero, there’s no way to escape from having one more negative number than positive.

If you think of a two’s complement number as a large negative number with positive
numbers added back, you could conclude that it would be difficult to form the two’s
complement. It turns out that there’s a method of forming the two’s complement that is very
easy to do with either a pencil or a computer:

• Take the complement of each bit in the number to be negated. That is, if a bit is a zero,
make it a one, and vice-versa.

• To the result of the first step, add one as though doing unsigned arithmetic.

Let’s do an example: we will find the two’s complement representation of –87. We start
with the binary value for 87, or 01010111. Here are the steps:

01010111 original number

10101000 each bit complemented, or “flipped”

+ 1 add 1 to 10101000

10101001 this is the two’s complement, or –87.

We can check this out. The leftmost bit represents –128, and the remaining bits have
positive values which are added back. We have –128 + 32 + 8 + 1, or –128 + 41 = −87. There’s

Binary Numbers and Computer Arithmetic

–12–

another way to check this. If you add equivalent negative and positive numbers, the result is
zero, so –87 + 87 = 0. Does 01010111 + 10101001 = 0? Perform the addition and see.

In working with two’s complement numbers, you will often find it necessary to adjust the
length of the number, the number of bits, to some fixed size. Clearly, you can expand the size of
a positive (or unsigned) number by adding zeroes on the left, and you can reduce its size by
removing zeroes from the left. If the number is to be considered a two’s complement positive
number, you must leave at least one zero on the left in the sign bit’s position.

It’s also possible to expand the size of a two’s complement negative number by supplying
one-bits on the left. That is, if 1010 is a two’s complement number, 1010 and 11111010 are
equal. 1010 is –8+2 or –6. 11111010 is –128+64+32+16+8+2 or –6. Similarly you can shorten
a negative number by removing ones from the left so long as at least one one-bit remains.

We can generalize this notion. A two’s complement number can be expanded by
replicating the sign bit on the left. This process is called sign extension. We can also shorten a
two’s complement number by deleting digits from the left so long as at least one digit identical to
the original sign bit remains.

Fractions

In ordinary decimal numbers, we represent fractions as negative powers of ten, and we
mark the division between the integer and fraction parts with a “decimal point.” The same
principle applies to binary numbers. 0.12 is 2-1 or 1/2. 0.112 is 2

-1 + 2-2 or 1/2 + 1/4 = 3/4. As with
decimal fractions, not all fractional values can be represented exactly, but we can get arbitrarily
close by using more fraction bits.

Unhappily, we don’t have a symbol we can use for the “binary point.” A programmer
who wants to use binary fractions must pick a location for the implied binary point and scale all
numbers to maintain binary point alignment.

Binary Arithmetic

Arithmetic is at the heart of the digital computer, and the majority of arithmetic
performed by computers is binary arithmetic, that is, arithmetic on base two numbers. Decimal
and floating-point numbers, also used in computer arithmetic, depend on binary representations,
and an understanding of binary arithmetic is necessary in order to understand either one.

Computers perform arithmetic on fixed-size numbers. The arithmetic of fixed-size
numbers is called finite-precision arithmetic. The rules for finite-precision arithmetic are
different from the rules of ordinary arithmetic.

The sizes of numbers which can be arithmetic operands are determined when the
architecture of the computer is designed. Common sizes for integer arithmetic are eight, 16, 32,
and recently 64 bits. It is possible for the programmer to perform arithmetic on larger numbers
or on sizes which are not directly implemented in the architecture. However, this is usually so
painful that the programmer picks the most appropriate size implemented by the architecture.

Binary Numbers and Computer Arithmetic

–13–

This puts a burden on the computer architect to select appropriate sizes for integers, and on the
programmer to be aware of the limitations of the size he has chosen and on finite-precision
arithmetic in general.

We are considering binary arithmetic in the context of building digital logic circuits to
perform arithmetic. Not only do we have to deal with the fact of finite-precision arithmetic, we
must consider the complexity of the digital logic. When there is more than one way of
performing an operation we choose the method which results in the simplest circuit.

Finite-Precision Arithmetic

Consider what it would be like to perform arithmetic if one were limited to three-digit
decimal numbers. Neither negative numbers nor fractions could be expressed directly, and the
largest possible number that could be expressed is 999. This is the circumstance in which we
find ourselves when we perform computer arithmetic because the number of bits is fixed by the
computer’s architecture. Although we can usually express numbers larger than 999, the limits
are real and small enough to be of practical concern. Working with unsigned 16-bit binary
integers, the largest number we can express is 216−1, or 65,535. If we assume a signed number,
the largest number is 32,767.

There are other limitations. Consider again the example of three-digit numbers. We can
add 200 + 300, but not 600 + 700 because the latter sum is too large to fit in three digits. Such a
condition is called overflow and it is of concern to architects of computer systems. Because not
all operations which will cause overflow can be predicted when a computer program is written,
the computer system itself must check whether overflow has occurred and, if so, provide some
indication of that fact.

Tanenbaum points out that the algebra of finite-precision is different from ordinary
algebra, too. [TANE90] Neither the associative law nor the distributive law applies. Two
examples from Tanenbaum illustrate this. If we evaluate the expression

a + (b − c) = (a + b) − c

using a = 700, b= 400, and c=300, the left-hand side evaluates to 800, but overflow occurs when
evaluating a + b in the right-hand side. The associative law does not hold.

Similarly if we evaluate

a × (b − c) = a × b − a × c

using a = 5, b = 210, and c = 195, the left-hand side produces 75, but in the right-hand side, a × b
overflows and distributive law does not hold.

These two examples show the importance of understanding the limitations on computer
arithmetic. This understanding is important to programmers as well as designers of computers.

Binary Numbers and Computer Arithmetic

–14–

Addition of Signed Numbers

We have already considered addition of unsigned binary numbers. Binary addition of
two’s complement signed numbers can be performed using the same rules given above for
unsigned addition. If there is a carry out of the sign bit, it is ignored.

Since we are dealing with finite-precision arithmetic, it is possible for the result of an
addition to be too large to fit in the available space. The answer will be truncated, and will be
incorrect. This is the overflow condition discussed above. There are two rules for determining
whether overflow has occurred:

• If two numbers of opposite signs are added, overflow cannot occur.
• If two numbers of the same sign are added, overflow has occurred if and only if the result

is of the opposite sign.

Subtraction

Addition has the property of being commutative, that is, a+b = b+a. This is not true of
subtraction. 5 – 3 is not the same as 3 – 5. For this reason, we must be careful of the order of the
operands when subtracting. We call the first operand, the number which is being diminished, the
minuend; the second operand, the amount to be subtracted from the minuend, is the subtrahend.
The result is called the difference.

51 minuend
 – 22 subtrahend

29 difference.

It is possible to perform binary subtraction using the same process we use for decimal
subtraction, namely subtracting individual digits and borrowing from the left. This process
quickly becomes cumbersome as you borrow across successive zeroes in the minuend. Further,
it doesn’t lend itself well to automation. Jacobowitz describes the “carry” method of subtraction
which some of you may have learned in elementary school, where a one borrowed in the
minuend is “paid back” by adding to the subtrahend digit to the left. This means that one need
look no more than one column to the left when subtracting. Subtraction can thus be performed a
column at a time with a carry to the left, analogous to addition. This is a process which can be
automated, but we are left with difficulties when the subtrahend is larger than the minuend or
when either operand is signed.

Since we can form the complement of a binary number easily and can add signed
numbers easily, the obvious answer to the problem of subtraction is to take the two’s
complement of the subtrahend, then add it to the minuend. We aren’t saying anything more than
that 51–22 = 51+(–22). Not only does this approach remove many of the complications of
subtraction by the usual method, it means we don’t have to build special circuits to perform
subtraction. All we need is a circuit which can form the bitwise complement of a number and an
adder.

Binary Numbers and Computer Arithmetic

–15–

Multiplication

A simple way to perform multiplication is by repeated addition. In the example below,
we could add 42 to the product register 27 times. In fact, some early computers performed
multiplication this way. However, one of our goals is speed, and we can do much better using
the familiar methods we have learned for multiplying decimal numbers. Recall that the
multiplicand is multiplied by each digit of the multiplier to form a partial product, then the
partial products are added to form the total product. Each partial product is shifted left to align
on the right with its multiplier digit.

 42 multiplicand
× 27 multiplier
 294 first partial product (42 × 7)
 84 second partial product (42 × 2)
1134 total product.

Binary multiplication of unsigned (or positive two’s complement) numbers works exactly
the same way, but is even easier because the digits of the multiplier are all either zero or one.
That means the partial products are either zero or a copy of the multiplicand, shifted left
appropriately. Consider the following binary multiplication:

 0111 multiplicand
 × 0101 multiplier
 0111 first partial product (0111 × 1)
 0000 second partial product (0111 × 0)
 0111 third partial product (0111 × 1)
 0000 fourth partial product (0111 × 0)
 0100011 total product.

Notice that no true multiplication is necessary in forming the partial products. The
fundamental operations required are shifting and addition. This means we can multiply unsigned
or positive integers using only shifters and adders.

With pencil-and-paper multiplication, we form all the partial products, then add them. It
isn’t necessary to do that; we could simply keep a running sum. When the last partial product is
added, the running sum will be the total product. We can now state an algorithm for binary
multiplication suitable for a computer implementation:

1. Set the product variable to zero

2. Set a counter to the number of bits in the multiplier

3. Shift the multiplier right one bit. If the bit shifted out was a one, add the multiplicand
to the product variable.

4. Shift the multiplicand left one bit and go to Step 3; the algorithm terminates when all
the digits of the multiplier have been examined.

Since the underlying arithmetic operation is addition, the possibility of overflow exists.
We handle the possibility a little differently in multiplication. If two n-bit numbers are

Binary Numbers and Computer Arithmetic

–16–

multiplied, the largest possible product is 2n bits. Multiplication is usually implemented such
that the register which receives the product is twice as large as the operand registers. In that
case, overflow cannot occur.

Notice also that if the multiplier is n bits long, the multiplicand will have been shifted left
n bits by the time the algorithm terminates. For this reason, multiplication algorithms make a
copy of the multiplicand in a register 2n bits wide. Examination of the bits of the multiplier is
often performed by shifting a copy of the multiplier right one bit at a time. This is because shift
operations often save the last bit “shifted out” in a way that is easy to examine.

Unfortunately, this algorithm does not work for signed numbers. If the multiplicand is
negative, the partial products must be sign-extended so that they form 2n-bit negative numbers.
If the multiplier is negative, the situation is even worse; the bits of the multiplier no longer
specify an appropriately-shifted copy of the multiplicand. One way around this dilemma would
be to take the two’s complement of negative operands, perform the multiplication, then take the
two’s complement of the product if the multiplier and multiplicand are of different signs. This
approach would require a considerable amount of time before and after the actual multiplication,
and so is usually rejected in favor of a faster but less straightforward algorithm. One such
algorithm is Booth’s Algorithm, which is discussed in detail in Stallings.

Division

As with the other arithmetic operations, division is based on the paper-and-pencil
approach we learned for decimal arithmetic. We will show an algorithm for unsigned long
division that is essentially similar to the decimal algorithm we learned in grade school. Let us
divide 0110101 (5310) by 0101 (510). Beginning at the left of the dividend, we move to the right
one digit at a time until we have identified a portion of the dividend which is greater than or
equal to the divisor. At this point a one is placed in the quotient; all digits of the quotient to the
left are assumed to be zero. The divisor is copied below the partial dividend and subtracted to
produce a partial remainder as shown below.

Now digits from the dividend are “brought down” into the partial remainder until the
partial remainder is again greater than or equal to the divisor. Zeroes are placed in the quotient
until the partial remainder is greater than or equal to the divisor, then a one is placed in the
quotient, as shown below.

0101 0110101
0101

1

1
divisor dividend

partial remainder

quotient

0101 0110101
0101

110

101

Binary Numbers and Computer Arithmetic

–17–

The divisor is copied below the partial remainder and subtracted from it to form a new
partial remainder. The process is repeated until all bits of the dividend have been used. The
quotient is complete and the result of the last subtraction is the remainder.

This completes the division. The quotient is 10102 (1010) and the remainder is 112 (310),
which is the expected result. This algorithm works only for unsigned numbers, but it is possible
to extend it to two’s complement numbers. As with the other algorithms, it can be implemented
using only shifting, complementation, and addition.

Limitations of Binary Integers

The natural arithmetic operand in a computer is the binary integer. However, the range
of numbers that can be represented is limited by the computer’s word size. We cannot represent
very large or very small numbers. For example, in a computer with a 32 bit word, the largest
signed number is 231 – 1. The range is further diminished if some bits of the word are used for
fractions. There are techniques for performing integer arithmetic on groups of two or more
words, but these are both painful for the programmer and consuming of CPU time.

It is not uncommon for very large and very small numbers to occur in the kinds of
problems for which computers are used. These numbers do not lend themselves to
representation in integer form, or integer and fraction form. Another approach is needed for
problems whose variables are not small integers.

Scientific Notation

Scientists and engineers have developed a compact notation for writing very large or very
small numbers. If we wrote it out, the mass of the sun in grams would be a two followed by 33
zeroes. The speed of light in meters per second would be a three followed by eight zeroes.
These same numbers, when expressed in scientific notation, are 2 × 1033 and 3 × 108. Any
number n can be expressed as

n = f × 10e

where f is a fraction and e is an exponent. Both f and e may be negative. If f is negative the
number n is negative. If e is negative, the number is less than one.

The essential idea of scientific notation is to separate the significant digits of a number
from its magnitude. The number of significant digits is determined by the size of f and the range
of magnitude is determined by the size of e.

0101 0110101
0101

110
0101

11

1010

Binary Numbers and Computer Arithmetic

–18–

We wrote the speed of light as 3 × 108 meters per second. If that is not precise enough,
we can write 2.997 × 108 to express the same number with four digits of precision.

Floating Point Numbers

Floating-point number systems apply this same idea – separating the significant digits of
a number from its magnitude – to representing numbers in computer systems. Relatively small
numbers for the fraction and exponent part provide a way to represent a very wide range with
acceptable precision.

In the early days of computers, each manufacturer developed their own floating-point
representation. These were incompatible. In some cases, they even produced wrong answers.
Floating-point arithmetic has some subtleties which are beyond the scope of this paper.

In 1985, the Institute of Electrical and Electronic Engineers published IEEE Standard 754
for floating-point arithmetic. Virtually all general purpose processors built today have floating-
point units which conform to IEEE 754. The examples in this paper describe IEEE 754 floating-
point number formats.

Instead of using base ten and powers of ten like scientific notation, IEEE 754
floating-point uses a binary fraction and an exponent that is considered to be a power of two.
The format of a single-precision floating-point number is shown in Figure 1. The leftmost bit
indicates the sign of the
number, with a zero
indicating positive and

a one indicating negative.
The exponent occupies eight
bits and is also signed. A
negative exponent indicates
that the fraction is multiplied by a negative power of two. The exponent is stored as an excess
127 number, which means that the value stored is 127 more than the true value. A stored value
of one indicates a true value of -126. A stored value of 254 indicates a true value of +127.
Exponents values of zero or 255 (all ones) are used for special purposes described later. The
fraction part is a 23-bit binary fraction with the binary point assumed to be to the left of the first
bit of the fraction. The approximate range of such a number is ± 10-38 to ±1038. This is
substantially more than we can express using a 32-bit binary integer.

Normalized Numbers

 We represented the speed of light as 2.997 × 108. We could also have written 0.2997 ×
109 or 0.02997 × 1010. We can move the decimal point to the left, adding zeroes as necessary, by
increasing the exponent by one for each place the decimal point is moved. Similarly, we can
compensate for moving the decimal point to the right by decreasing the exponent. However, if
we are dealing with a fixed-size fraction part, as in a computer implementation, leading zeroes in
the fraction part cost precision. If we were limited to four digits of fraction, the last example

Sign
(1 bit)

Exponent
(8 bits)

Fraction
(23 bits)

Figure 1. Format of an IEEE 754 single-precision floating-
point number.

Binary Numbers and Computer Arithmetic

–19–

would become 0.0299 × 1010, a cost of one digit of precision. The same problem can occur in
binary fractions.

In order to preserve as many significant digits as possible, floating-point numbers are
stored such that the leftmost digit of the fraction part is non-zero. If, after a calculation, the
leftmost digit is not significant (i.e. it is zero), the fraction is shifted left and the exponent
decreased by one until a significant digit – for binary numbers, a one – is present in the leftmost
place. A floating-point number in that form is called a normalized number. There are many
possible unnormalized forms for a number, but only one normalized form.

Storing numbers in normalized form provides an opportunity to gain one more significant
binary digit in the fraction. If the leftmost digit is known to be one, there is no need to store it; it
can be assumed to be present. IEEE 754 takes advantage of this; there is an implied one bit and
an implied binary point to the left of the fraction. To emphasize this difference, IEEE 754 refers
to the fractional part of a floating-point number as a significand.

Range of Floating Point Numbers

Although the range of a single-precision floating-point number is ± 10-38 to ±1038 , it is
important to remember that there are still only 232 distinct values. The floating-point system can
not represent every possible real number. Instead, it approximates the real numbers by a series
of points. If the result of a calculation is not one of the numbers that can be represented exactly,
what is stored is the nearest number that can be represented. This process is called rounding,
and it introduces error in floating-point calculations. Since rounding down is as likely as
rounding up, the cumulative effect of rounding error is generally negligible.

The spacing between floating-point numbers is not constant. Clearly, the difference
between 0.10 × 21 and 0.11 × 21 is far less than the difference between 0.10 × 2127 and 0.11 × 2127.
However, if the difference between numbers is expressed as a percentage of the number, the
distances are similar throughout the range, and the relative error due to rounding is about the
same for small numbers as for large.

Not only cannot all real numbers be expressed exactly, there are whole ranges of numbers
that cannot be represented. Consider the real number line as shown in Figure 2. The number
zero can be represented exactly because it is defined by the standard. The positive numbers that
can be represented fall approximately in the range 2-126 to 2+127. Numbers greater than 2+127

cannot be represented; this is called positive overflow. A similar range of negative numbers can
be represented. Numbers to the left of that range cannot be represented; this is negative
overflow.

Figure 2. Zones of floating-point numbers along the real number line.

Zero
Negative
Overflow

Positive
Overflow

Negative
Underflow

Positive
Underflow

Representable
Negative Numbers

Representable
Positive Numbers

< 2-126> -2-126
< -2+127 > 2+127

Binary Numbers and Computer Arithmetic

–20–

There is also a range of numbers near zero that cannot be represented. The smallest
positive number that can be represented in normalized form is 1.0 × 2-126. The condition of trying
to represent smaller numbers is called positive underflow. The same condition on the negative
side of zero is called negative underflow. Prior to IEEE 754, manufacturers just set such results
to zero or signaled an error exception. The IEEE standard provides a more graceful way of
handling such conditions: the requirement that numbers be normalized is relaxed near zero. The
exponent is allowed to become zero, representing 2-127, the implicit one at the left of the binary
point becomes a zero, and the fraction part is allowed to have leading zeroes. Such a number
approaches zero with increasing loss of significant digits.

More on IEEE 754

In addition to the single-precision floating-point numbers we have discussed, IEEE 754
specifies a double-precision number of 64 bits. The double-precision format has one bit of sign,
eleven bits of exponent, and 52 bits of fraction. This gives it a range of approximately ± 10-308 to
±10308. There is also an 80-bit extended-precision representation used mainly internally to
floating-point processors.

Each format provides a way to represent special numbers in addition to the regular
normalized floating-point format. An exponent of zero with a non-zero fraction is the
denormalized form discussed above to handle positive and negative overflow. A number with
both exponent and fraction of zero represents the number zero. Both positive and negative
representations of zero are possible.

Positive and negative overflow are handled by providing a representation for infinity.
This is a positive or negative sign bit, an exponent of all ones, and a fraction of zero. This
representation is also used for the result of division by zero. Arithmetic operations on infinity
behave in a predictable way.

Finally, all ones in the exponent and a non-zero fraction represents Not a Number, also
called NaN. Arithmetic on NaNs also behaves in a predictable fashion.

Summary

The binary number system is a positional number system based on powers of two. We
choose a two-valued system because it can be implemented reliably with electronic circuits.
Fractions depend on an implied radix point (binary point) and are expressed as the sum of
negative powers of two: ½, ¼, and so on. Negative numbers can be expressed using signed
magnitude, excess 2n-1, or twos complement. For integer arithmetic, we choose twos
complement. Hexadecimal (base 16) and octal (base 8) numbers are used in computer science as
shorthand for binary numbers.

The rules of binary addition can be expressed as a truth table, therefore it is possible to
build an electronic circuit that can perform binary addition. Subtraction is performed by taking
the twos complement of the subtrahend and adding it to the minuend. Other arithmetic circuits
are also possible.

Binary Numbers and Computer Arithmetic

–21–

Computer arithmetic is finite-precision arithmetic. The algebra of finite-precision
arithmetic is different from ordinary algebra, especially near the boundaries of number size. The
rules of binary arithmetic are similar to the rules for decimal arithmetic. Complications arise in
multiplication and division of signed numbers.

It is difficult to express very large or very small numbers using only binary integers and
binary fractions. The key idea behind floating point numbers is separating the precision of a
number from its magnitude. The floating point number system trades precision for range. The
choice between floating point and integer representations of numbers is a system design decision.

Binary Numbers and Computer Arithmetic

–22–

Exercises

BN-1. Convert the following unsigned binary numbers to decimal:

10101
10000
01111
11111

BN-2. Convert the following decimal numbers to binary:

 32
127
255
275

BN-3. Which of the following binary numbers are even? How can you tell by inspection
whether a binary number is even or odd?

101010
101011
111111
111110

BN-4. Convert 4210 to binary, negate it by forming the two’s complement, and compute –42 +
42 using binary numbers. What answer do you expect and why?

BN-5. Write the binary equivalent of 31/16. To make your work clear, use a period as a “binary
point.”

BN-6. Using only the methods and material presented above, suggest a strategy for performing
binary subtraction.

BN-7. Which of the following are valid hexadecimal numbers?
 BAD DEAD CABBAGE ABBA 127

BN-8. Convert the following binary numbers to hexadecimal.
 00000000
 10001000
 00011010
 11111111

BN-9. Convert the binary numbers in Exercise 8 to octal.

BN-10. Convert the following octal numbers to both binary and hexadecimal.
 377
 127
 4066
 01

Binary Numbers and Computer Arithmetic

–23–

BN-11. Explain why there is one more negative number than there are positive numbers for a
given number of bits in two’s complement representation.

BN-12. Add the following unsigned binary numbers:

 00101011 01100001 01000010 01111111 01111111
 01001100 00001111 01010101 00000001 00000010

BN-13. Convert the following unsigned binary numbers to two’s complement:

 01101111 00011000 00110101 01011011 01011000

BN-14. Compute 01101010 × 01110111. Show your work. (Beware. This is hard.)

BN-15. Divide 01011 into 011011000. Show your work.

BN-16. Convert 137 and 42 to binary. Compute the binary equivalent of 137 − 42. Show your
work.

BN-17. Compute 42 − 137 in binary. Show your work.

BN-18. Rewrite the following numbers in normalized form and express the answer using
decimal numbers in scientific notation. State the rule for normalizing a floating-point
number.

 a) 6.02257 × 1023 b) 0.0005 × 106 c) 427 × 100 d) 3.14159

BN-19. Add the following pairs of numbers; express the sums in normalized form using
scientific notation. State the rule for addition of floating point numbers.

 a) 0.137 × 102 + 0.420 × 102 b) 0.288 × 103 + 0.650 × 104

BN-20. Multiply the following pairs of numbers; express the products in normalized form. State
the rule for multiplication of floating point numbers.

a) (0.137 × 102) × (0.420 × 102) b) (0.288 × 103) × (0.650 × 104)

BN-21. Add this pair of numbers. Normalize the result and write the fraction as a finite-
precision number with four decimal digits of precision, i.e. four digits to the right of the
decimal point. Explain why you got the result you did. What observation can you make

Binary Numbers and Computer Arithmetic

–24–

about addition and subtraction of floating-point numbers?

0.5000 × 108 + 0.4321 ×102

BN-22. Convert 0.640 × 102 to an IEEE 754 single-precision floating point number; separate the
various parts of the number with vertical lines and label them as shown in Figure 1.
Show your work.

BN-23. Convert the number ¾ to an IEEE 754 single-precision floating point number; separate
the various parts of the number with vertical lines and label them as shown in Figure 1.
Show your work.

BN-24. Explain the concept of underflow.

BN-25. What is the essential idea behind scientific notation and floating-point numbers?

Bibliography

Jacobowitz, Henry, Computer Arithmetic, John F. Rider Publisher, 1962.

Stallings, William, Computer Organization and Architecture, Fourth Edition, Prentice-Hall,
1996.

Tanenbaum, Andrew S., Structured Computer Organization, Third edition, Prentice-Hall, 1990.

Youse, Bevan K., The Number System, Dickenson Publishing Company, 1965.

